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Abstract
We present an overview of two leading methods of determining probability
distributions from Mössbauer spectra, using the model amorphous magnet
Fe80B20. A comparison is made between the maximum-entropy method, which
permits analysis using truly arbitrary parameter probability distributions, and a
Voigtian-based analysis, which uses a sum of Gaussian components to create
parameter distributions of pseudo-arbitrary shape. Our results indicate that, in
Fe80B20, a Gaussian distribution of magnetic hyperfine fields is a very good
approximation, although small deviations from a Gaussian shape are evident.
We find that the apparent existence of correlations between the isomer shift
and magnetic hyperfine field parameters, as found using Voigt-based analyses,
may be an artefact of imposing a Gaussian shape on the parameter distributions.
We conclude that maximum entropy and Voigtian analyses together provide
a very powerful means of characterizing magnetic materials with Mössbauer
spectroscopy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After the discovery of the Mössbauer effect [1–3], Mössbauer spectroscopy—and in particular
57Fe Mössbauer spectroscopy—quickly developed into an extremely useful scientific probe
of magnetic materials. The technique directly measures the splitting of nuclear energy
levels, which provides information at a very high resolution about the mean size of the
magnetic hyperfine field and the electric field gradient at the Fe nuclear sites. In a simple,
homogeneous, ferromagnetic system, a least-squares non-linear regression analysis can be used
to fit absorption line shapes to the data. Statements can then be made about the size of the
magnetic hyperfine field at the Fe sites with some certainty.
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Disordered magnetic materials, such as metallic glasses, may have a range of different
hyperfine field environments at the Fe nuclear sites, effectively giving a continuous distribution
of fields. In these systems, the analysis becomes somewhat less straightforward. It is widely
accepted that the distributions are close to a Gaussian shape. On the other hand, determining
the hyperfine field distribution from Mössbauer spectra is a typical ‘badly posed’ problem
involving noisy data, and the number of models consistent with such a given data set is very
large. In badly posed problems, simply inverting the transform matrix, which maps a parameter
probability distribution onto an instrumental spectrum, produces an unacceptable level of noise
in the solution. We therefore need some other means of choosing one of the many available
models that offer a good description of the data. By a good description, we mean that the
traditional measure of quality of fit, the normalized χ2 statistic, should equal unity:

χ2 = 1

N

N∑

j=1

|y j − D j |2
σ 2

j

= 1 (1)

where D are the measured data, σ are the uncertainties, y are the fitted points generated from
the model, and N is the number of data points in the spectrum.

Much progress was made in the 1980s regarding this problem. In the first instance, a coarse
histogram can be constructed from sub-spectra, using a least-squares non-linear regression-
based analysis. Convincing arguments, based on the number of atoms in the first near-
neighbour shell, have been used to justify the number of sub-spectra used in such analyses [4]
although the data analysis itself is not so satisfactory. A Fourier-series technique also exists [5],
which was used previously to study the same model system [6], but this suffers from the
drawbacks of imposing symmetrical line intensities onto the spectra (which are generally
asymmetric) and introducing oscillations into the probability distribution. The asymmetry
in the Mössbauer spectra, i.e. the difference in absorption line intensity on each side of the
spectrum, has been attributed to two well documented phenomena. Lines and Eibschütz explain
the asymmetry in the Mössbauer spectra from amorphous alloys by the existence of correlations
between the hyperfine parameter distributions [7]. Le Caër and Dubois found that the spectral
asymmetry is more likely to be brought about the presence of anisotropic dipolar hyperfine
fields [8]. As will be shown below, the present study supports the latter view in that we find no
evidence for parameter correlations in our analysis. The existing techniques impose a shape—
either directly or indirectly—upon the obtained hyperfine field distributions. We would like to
be able to select a model that conforms to equation (1) without using such assumptions, and in
so doing remove the necessity of a parameter correlation to provide this asymmetry.

The method of maximum entropy (MaxEnt) produces a probability distribution that is
maximally non-committal with regard for missing information. In other words, the maximum
entropy model is one which satisfies equation (1) whilst using the least amount of required
information in the solution. Tests of a MaxEnt algorithm with synthetic Mössbauer spectra
(with noise) proved very successful and extremely sensitive to the distribution shape [9, 10].

In light of these advances in magnetic hyperfine field distribution determination from
Mössbauer spectra, we consider it timely to compare two of the leading methods of analysis,
namely MaxEnt and Voigt-based least-squares regression, and use them to address the question
of whether the magnetic hyperfine field is indeed a Gaussian distribution in a model amorphous
magnetic system. We will show that in Fe80B20 it is a reasonable approximation to model
the hyperfine field distributions with correlated Gaussian probability curves. However, we
also show that the MaxEnt analysis uncovers deviations from Gaussian behaviour, and that the
apparent distribution correlations could be an artefact which results from imposing Gaussian
probability curves on the data in the extended Voigt-based fitting technique.
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Table 1. Values of the vector elements of βh and βε for a Zeeman-split Mössbauer spectrum.

Line 1 2 3 4 5 6

βh −0.161 36 −0.093 435 −0.025 51 0.025 51 0.093 435 0.161 36
βε 1 −1 −1 −1 −1 1

2. Experimental details

An ingot containing the appropriate quantities of Fe and B to make Fe80B20 was prepared from
high purity (>99.99%) elemental materials using an argon-arc furnace. The ingot was then
melted using an RF field and projected under an argon atmosphere onto a spinning copper
wheel. Typically, a thin amorphous ribbon is produced that measures 2–3 m in length and
several hundred microns in thickness. X-ray diffraction confirmed that there were no crystalline
impurity phases.

Pieces of ribbon were cut into short lengths, measuring 1–2 cm in length. These pieces
were then arranged to form a disc ∼2 cm in diameter and one ribbon thick. Mössbauer
spectra were collected at room temperature (∼20 ◦C) on a conventional, sinusoidal drive, 57Co
spectrometer. The data were calibrated for velocity against a spectrum collected at room
temperature from pure Fe foil.

3. Data analysis techniques

3.1. Extended Voigt-based fitting

This data analysis technique is part of the commercial software package Recoil [11]. The
method has been described fully by the software authors in a previous article [12], so we will
only summarize the method here.

One begins by assuming that a Zeeman-split Mössbauer spectrum, in the static limit, is
comprised of six absorption lines, where each line is described by a Lorentzian function of full
width at half maximum γ :

L(v j , vl , γ ) = 1

2π

γ

(v j − vl)2 + (γ /2)2
(2)

and where v j is the velocity at the j th datum point, and vl is the centre position of the lth
absorption line. The six line positions are given by

vl = βh
l H + βε

l ε + δ (3)

where H is the magnetic hyperfine field, and δ is the isomer shift. βh are the velocity shifts
per unit magnetic hyperfine field (relative to a pure Fe standard), and βε are the velocity shifts
caused by a finite quadrupole shift parameter ε, which arises in the presence of an electric field
gradient at the absorbing Fe nucleus. Equation (3) originates from a first order perturbation
theory, and the validity of the use of this equation will be addressed in section 4. βh and βε for
the six spectral lines are given in table 1.

If the sample has distributions of the parameters H , ε and δ, instead of single parameter
values, then the Mössbauer spectrum is given by a convolution of the Lorentzian-based sextet
spectrum with the distribution functions. The resulting absorption spectrum S(vl) is given by

S(vl) =
6∑

l=1

al

∫ ∞

−∞
dδ

∫ ∞

−∞
dε

∫ ∞

−∞
P(δ, ε, H )L(v j , vl, γ ) dH (4)
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where al is the area of the lth line. In the extended Voigt-based fitting method, Lagarec and
Rancourt build up a pseudo-arbitrary probability distribution P(δ, ε, H ) using a normalized
sum of (correlated) Gaussian components [12], which results in Voigtian absorption line shapes
that are approximated by pseudo-Voigtian functions in the software.

3.2. Maximum entropy

The maximum entropy method is an extremely satisfactory means of determining probability
distributions from experimental data. It has the advantage that it is not necessary to make
assumptions about the shape of P(δ, ε, H ), nor about correlations between the distributions
P(δ), P(ε) and P(H ).

A MaxEnt solution has the following favourable qualities.

(i) The probability distribution necessarily contains positive values.
(ii) It is the most uniform solution that is consistent with the data and its errors.

(iii) Any features in the probability distribution that are a departure from uniformity must be
necessary to describe the data within the experimental uncertainties.

It has been argued that MaxEnt is the only method by which probability distributions should
be established in the absence of other information, because of the strength of the probability
calculus upon which the method is based [13].

We have used an algorithm described by Skilling and Bryan [14], which has proven to
be very useful in deconvoluting astronomy data, which was its original purpose. Thereafter,
in condensed matter science, it has been used in spectral analysis in transverse-field muon
spin rotation experiments [15], in establishing probability distributions of scattering particle
sizes in small-angle neutron scattering [16], and in crystallographic applications [17]. Whereas
a Bayesian algorithm was used to good effect by Dou [18] in determining the distribution
of quadrupole splitting in Fe3+-chlorite, Dou’s method differs from our implementation—
which is essentially the same as that used by Brand and Le Caër [9]. Dou et al use Bayesian
methods to establish the prior probability distribution given that the solution must possess finite
second derivatives. However, we wish to obtain a smooth probability distribution from the data
without forcing this in any way. A smooth probability distribution is produced naturally by the
traditional MaxEnt method unless the data justify a departure from smoothness.

The use of the Skilling–Bryan MaxEnt algorithm has already been described several
times before (e.g. [15]), so in this paper we present only a short description regarding our
implementation (written in C/C++) to analyse Mössbauer spectroscopy.

The problem solved by MaxEnt is the reconstruction of a probability vector f . f is related
to the measured data D via the equation

D j =
K∑

i=1

O ji fi + σ j (5)

where K is the number of elements in the array f , and σ j is the Gaussian noise on the j th data
point. It should be clear from equation (5) why the noise σ prevents a simple inversion of O ji

from producing a satisfactory spectrum f . The Skilling–Bryan algorithm uses the transpose of
O ji , and not the inverse. Indeed, O−1

j i need not even exist.
The algorithm searches for an image f which satisfies χ2 = 1 whilst maximizing the

statistical entropy:

S = −
K∑

i=1

pi ln

(
pi

wi

)
(6)
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where p is a vector of normalized, weighted probability calculated from f by

pi = wi fi∑K
j=1 w j f j

(7)

where w are the weights assigned to each probability f . Because we wish to introduce no prior
information into the solution, we set all wi = 1. The solution probability map therefore only
contains information that is justified by the data.

We have used MaxEnt to reconstruct a 3D probability map of P(δ, ε, H ), neither assuming
analytical forms for the probability distributions nor any correlation between them. The
transform matrix O ji produces a gamma-ray photon absorption spectrum relative to a flat
background level, and is calculated using the following method:

O ji = −S(v j , αi ) (8)

where S(v j , αi ) are Mössbauer sub-spectra. Here we have used α to denote a point in (δ, ε, H )
parameter space.

In the static limit, the spectrum S(v j , αi ), with a non-zero magnetic hyperfine field, is an
absorption spectrum with six lines, where each line is well described by a Lorentzian function.
We therefore have

S(v j ) =
l=6∑

l=1

ηl L(v j , vl , γ ) (9)

where vl is determined using the δ, ε and H values at point α. ηl , L( ) and vl are exactly the
same as those in equations (2)–(4).

Depending on the desired resolution of the probability map, the operations on O ji can
become reasonably large. In this specific example (512.643 = 134M matrix elements,
requiring over 500 MB of memory), we required approximately one-and-a-half hours of
calculation time on a 1.5 GHz PowerPC processor. Even with moderately sized transform
matrices, on modern computing equipment these algorithms are not slow to use—they are much
faster than the data acquisition.

We thoroughly tested this software using synthetic data sets of varying degrees of
complexity and signal-to-noise ratios, and against Fe standard spectra that were used to
calibrate the spectrometers. In all cases, the MaxEnt algorithm reconstructed the correct
probability maps.

4. Results and discussion

In both analyses, the best results were obtained by fixing the line areas in the ratios
3:3.02:1:1:3.02:3. It was not possible to model the data adequately with the ratios 3:2:1:1:2:3
as would normally be used for a magnetic sample without any magnetic texture or preferred
alignment of the atomic moments. A relative area of 3.02(2) for the second and fifth lines was
obtained via the Voigtian analysis, and fed into the MaxEnt analysis for a fair comparison of
the two techniques. This indicates a tendency of the atomic moments to point in the plane
of the ribbons, i.e. perpendicular to the gamma rays, as was found in other studies on these
materials (e.g. [4]). The intrinsic Lorentzian line width (FWHM) was fixed at 0.22 mm s−1, the
same broadening as was used in the Voigtian analysis. This value is an approximation to the
broadening that can be obtained via a more detailed calculation according to Le Caër et al [19].

Figure 1 compares the two models with the experimental data. The best Voigt-based fit
to the data was obtained using Gaussian distributions of the two parameters δ and H and
one non-zero correlation parameter, ρδH . The spectral shape, with a slight asymmetry in the
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Figure 1. Extended Voigt-based fit (a) and maximum entropy fit (b) to the Mössbauer data of
amorphous Fe80B20 ribbons. The error bars are smaller than the data points. Beneath each spectrum
is also shown the difference between the fits and the data, plotted on the same scale.

Table 2. Results of Voigtian analysis of Fe80B20 Mössbauer spectra, assuming that correlations
exist between the isomer shift and magnetic hyperfine field distributions.

δ (mm s−1) σδ (mm s−1) ε (mm s−1) µ0 H (T) σµ0 H (T) ρδH

0.067 (3) 0.145 (4) −0.012 (2) 24.86 (2) 3.34 (2) 0.15 (1)

line intensities, justifies the use of correlations between the parameter distributions. A single
value of ε was used. Indeed, having a Gaussian distribution of ε values made the fit unstable
and merely increased the parameter uncertainties by orders of magnitude. In figure 1 there
is visually very little to distinguish the quality of the two models, as they offer an adequate
description of the experimental data. The misfit statistic χ2 for the Voigt-based analysis was
2.69, whereas the MaxEnt fit has χ2 = 1 by definition. The results of the extended Voigt-based
fit are summarized in table 2.

The two-dimensional probability map P(δ, H ) obtained from the Voigt-based fit is shown
in figure 2. The peak in probability is clearly seen in the centre, at 25 T and 0.07 mm s −1.
It should also be clear in this figure that the contour lines are not circular, but are instead
diagonally distorted, which is caused by the non-zero correlation parameter ρδH = 0.16(1).

The MaxEnt algorithm was used to establish a 3D probability map, covering isomer shifts
and quadrupole shifts between −0.9 and 0.9 mm s−1, and covering magnetic hyperfine fields
µ0 H in the range 0–50 T. The experimental errors were multiplied by a factor of 1.05 to help
smooth out the probability distribution and to avoid ‘over-analysis’ of the data. The mean from
ten data points (five from each side of the spectrum) was used as an estimate of the background
100% transmission level. Figure 3 shows the probability matrix P(δ, ε, H ), established by
MaxEnt analysis, projected onto the P(δ, H ) plane for comparison with the results from the
extended Voigt-based fitting. Again, the probability is strongly peaked in the centre, around
25 T in magnetic hyperfine field and around 0.07 mm s−1 in isomer shift. However, figure 3
does not exhibit the same diagonal distortion, and in the centre the contours appear to be more
circular in shape. We can therefore conclude that the use of a correlation between the isomer
shift and magnetic hyperfine field distributions is not necessarily valid, and may be required in
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Figure 2. The two-dimensional probability map, as a function of isomer shift and magnetic
hyperfine field in Fe80B20, determined by extended Voigt-based fitting analysis of the Mössbauer
spectrum in figure 1, and allowing correlations between the isomer shift and magnetic hyperfine
field distributions. The outermost contour is p = 0.0002 and the innermost contour is p = 0.0022.

Figure 3. The two-dimensional probability map, as a function of isomer shift and magnetic
hyperfine field in Fe80B20, determined by MaxEnt analysis of the Mössbauer spectra in figure 1.
The outermost contour is p = 0.0005 and the innermost contour is p = 0.004. For comparison, the
Voigtian solution is marked with a black box. The horizontal and vertical bars on the box indicate
the width of the Gaussian magnetic hyperfine field distribution, σH , and the width of the isomer
shift distribution, σδ , respectively, obtained by the Voigt-based fitting method.

the Voigt-based fit because of the imposed Gaussian shape on the probability curves. In addition
to the broad, central maximum, the MaxEnt analysis reveals lobes of higher-than-background
probability centred on δ = ±0.4 and at H ∼ 23 T. The physical significance of this shape in
the probability map is currently under investigation.

Averaging the probability density over all isomer shifts δ in figure 3 answers the question
‘what is the magnetic hyperfine field distribution at the Fe sites?’, which is our main objective
in using Mössbauer spectroscopy in such studies on amorphous magnetic samples. The two
solutions, obtained from MaxEnt and Voigtian analyses, are shown in figure 4. The two results
agree extremely well at low fields, but the MaxEnt solution deviates from the Gaussian shape
close to, and above, the peak in P(H ). The slight asymmetry in the MaxEnt P(H ) curve is also
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Figure 4. The magnetic hyperfine field probability distributions in Fe80B20, obtained as described
in the text.

evident in the results obtained by Chien when using the Fourier series method [6], despite the
fact that such a Fourier series analysis imposes symmetry on the spectral analysis. So, although
the magnetic hyperfine field distribution appears to be nearly Gaussian, we suggest that in
reality there may be deviations from a Gaussian shape. The MaxEnt analysis also shows that
whilst the distributions P(δ) and P(ε) are strongly peaked, they also deviate from a Gaussian
shape. For the purposes of data analysis, however, the Voigtian and MaxEnt analysis techniques
agree to a level such that the Gaussian approximation should not be considered a gross over-
simplification. Using the value of mean quadrupole splitting of � = 0.45 mm s−1 from Le Caër
et al [19] and references therein, and using the parameters σH ∼ 3.4 T and H ∼ 25 T from
both of these p(H ) curves, we find that our results are in good agreement with the previous
FeB results plotted on the validity diagram [19]. This indicates that our analysis lies within the
region of reliability of first-order perturbation theory, and confirms the validity of the use of the
central equation (3) in both of the analysis techniques employed here.

5. Conclusions

We have analysed the magnetic hyperfine field distribution in the model amorphous
ferromagnet Fe80B20 using both a Voigtian and MaxEnt analysis. We find that the introduction
of correlations between the isomer shift and magnetic hyperfine field distributions in the Voigt-
based fitting technique produces a good explanation of the data. However, our MaxEnt analysis
suggests that this might not be representative of the physics of the material, but may instead
be an artefact of the extended Voigt-based fitting technique. Regarding the magnetic hyperfine
field distribution itself, we find that it is approximately Gaussian in shape, and the Voigtian
analysis offers a rather good approximation with which to model the physical properties of
this material. Lastly, we have demonstrated that the combined use of Bayesian and Voigtian
analyses of Mössbauer spectra provides a very powerful characterization tool for magnetic
samples.

We would like to point out that by extending this technique to several more dimensions in
parameter space it should be possible to construct a full, general solution to Mössbauer spectra
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based entirely upon probability calculus without prejudice, although the construction of such a
model will require much more computational time.
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